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Asymptotic analysis of premixed burning with large 
activation energy 
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The structure and propagation rates of premixed flames are determined by 
singular perturbation in the limit where the activation temperature is large 
relative to other flow temperatures for several basic flows. Specifically, the simple 
kinetics of an exothermic first-order monomolecular decomposition under 
Arrhenius kinetics is studied for one-dimensional laminar flame propagation, 
spherically symmetric quasi-steady monopropellant droplet burning, and other 
simple geometries. Results elucidate Lewis-number effects, losses owing to fuel 
gasification processes, and conditions under which the thin-flame approximation 
is a limit of finite-rate Arrhenius kinetics. 

1. Introduction 
In  his recent review of the state of theoretical understanding of laminar com- 

bustion problems, Williams (1971) points out that while singular perturbation 
techniques have been usefully exploited in the last decade, their full potential 
has yet to be realized. If one considers a typical gaseous flow undergoing exo- 
thermic burning, often the Schmidt and Lewis numbers are of order unity, so 
comparable flow times characterize transport of heat and mass by convection or 
diffusion. I n  such cases the principal dimensionless parameters for the gaseous 
phase of the flow are usually the first Damkohler number D, (the ratio of flow 
time to reaction time: the larger this parameter, the closer to chemical equi- 
librium); the second Damkohler number D, (the ratio of a heat of reaction to 
a static enthalpy : a measure of exothermicity); and the dimensionless Arrhenius 
activation temperature I9 (non-dimensionalized against a suitable static tem- 
perature). In  general, authors have not found it physically interesting to exploit 
D,, and most existing singular perturbation studies in aerothermochemistry 
examine the (often singular) limits D, -+ 0 (nearly frozen flow) and D,+ KI (near 
equilibrium). However, Williams notes that, particularly in premixed fuels, 
capitalizing upon large 8 rat,her tlba.n D, is likely to be more illuminating of 
the cases of practical engineering interest. The previous tendency to exploit 
D, exclusively probably stems from its presence in the conservation laws, 
as normally written, in the role of a multiplicative factor, whereas I9 occurs 
in the argument of an exponential function. No such case is worked out in the 
commonly cited texts on the method (Van Dyke 1964; Cole 1968). Indeed, the 
first solutions exploiting large I9 in an exothermic flow retaining the three 
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basic physical phenomena of convection, diffusion and reaction seem to be 
recent work examining one-dimensional flame propagation (Bush & Fendell 
1970) ai2d the structure of a planar steady detonation (Bush & Fendell 
1971). Although the latter study is more difficult because the conservation 
of momentum must be carefully examined, the former study may be more 
worthy of further development because most controlled and uncontrolled burning 
processes are low speed and an isobaric model suffices to an excellent approxi- 
mation. 

This study seeks to respond to Williams’s challenge for more useful perturba- 
tion studies by developing Bush & Fendell’s (1970) work in the direction of more 
complex, though still simple, problems related to real phenomena. In  particular, 
laminar flame propagation is reconstructed in $ 2  because it is essential to 
following cases and because i t  reveals both Lewis-number and also coZd-boundary 
effects. Non-adiabatic effects are then examined in $ 3 by allowing for losses owing 
to gasification processes in one-dimensional burning. The spherically symmetric 
burning of a single uniform monopropellant droplet in an unbounded stagnant 
atmosphere is introduced in § 4 to permit evaluation of the thin-Jlame model. It 
must be emphasized that singular perturbation techniques (Fendell 1965) have 
shown how the thin-flame model of Burke & Schumann (1928) is the physically 
relevant limit for equilibrium irreversible burning in initial19 unmixed reactants 
under a Shvab-Zel’dovich formulation (Williams 1965). The question being 
raised here is under what conditions (if any) is the oft-used thin-flame model 
described by Adler & Spalding (1961) for premixed reactants a true limit of 
Jinite-rate Arrhenius kinetics. It is perhaps worth drawing an analogy between 
conventional and current thin-flame works with certain compressible-flow 
studies: one compressible-flow work might use the Rankine-Hugoniot relations 
t o  fit a shock of proper strength correctly in a region of diffusion-free flow 
(analogous to the Spalding-Adler work), and another might retain diffusion 
where appropriate and elucidate shock structure (analogous to the present work). 
Of particular relevance here is the use of the thin-flame model for monopropellant 
burning for no heat loss to the ambient fluid by Spalding & Jain (1959), and later 
with such heat loss by Jain (1963). 

For all sections below, the simplest physically meaningful: model of pre- 
mixed chemical kinetics is adopted: an irreversible, direct, first-order, 
exothermic, monomolecular decomposition in the absence of inert species 
under an Arrhenius rate law, the largeness of the suitably non-dimensionalized 
activation temperature being exploited in the singular perturbation analysis 
undertaken. 

2. Laminar flame propagation 
The steady, plane, laminar, one-dimensional, isobaric burning of a combustible 

gas is examined in a co-ordinate system a t  rest with respect to the deflagration 
wave. A binary mixture with constant common heat capacity is studied in the 
absence of external forces, radiation, barodiffusion, thermodiffusion and inert 
gases. 
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In  conventional notation, the non-dimensional two-point boundary-value 
problem describing the flow is (Williams 1965) 

dY/dt = Le(Y-e), (2.1) 

dT/d( = 7 - B ,  (2.2) 

(2.3) ds/d( = A( 1 - Y )  r1+6 exp { - p( 1 - r)/(a-’ + T ) } ,  

subject to B ,  Y,r+O as [-+--GO, 

8, Y,r-+I as t+m. 

If subscript 1 refers to the reactant R and 2 to the product P in a simple uni- 
molecular reaction R -+ P, then Yl = 1 - Y2 (the mass fractions sum to unity) and 
el = 1-c2 (the mass-flux fractions sum to unity). If subscript u refers to the 
unburned gas at the cold boundary ([+-m) and b refers to the burned gas 
( t+m),  then 

where h is the thermal conductivity in Fourier’s law, x is the Cartesian spatial 
co-ordinate and m is the mass flux (mass per cross-sectional area, per time) of 
combustible mixture through the flame, the principal unknown. Under Fick’s 
law with mass-transfer coefficient D, Y and 6 are related by (2.1); provision for 
the presence of some product in the combustible upstream mixture is clearly 
included. The derivation permits the Lewis number Le = h/pc, D ,  where p is 
density, to be spatially varying but here it will be held fixed at  order unity- 
usually a good approximation. The conservation of energy is given by (2.2), the 
conservation of product being given by (2.3). The expansion parameter will be 
/3 = (Ta/Tb), where T, is the activation temperature; a = (Tb - T,)/Tu. Since 
A contains in, i.e. 

h = pB(Tb - TU)l+’ h e-p/c,, m2, (2.7) 

A plays the role of an eigenvalue; one seeks R(P,a,Le), where p.> 1 and 
Q, Le = O(1). In (2.7), B is the frequency factor, 6 characterizes the pre- 
exponential thermal dependence of the specific rate constant (taken in the form 
of temperature above cold-boundary temperature for reasons discussed immedi- 
ately below), and h - T for A to be constant (a physically reasonable convenience 
adopted here). 

The temperature Tb of the burned gas is here the adiabatic flame temperature 
attained by exothermic burning of the combustible mixture without losses at 
the boundaries : 

where h! is the specific enthalpy of formation of species i at temperature T,. 
Also 6 > - 1 so that the right-hand side of (2.3) vanishes as [+--GO, where the 
left-hand side vanishes by boundedness. This requirement resolves the cold- 
boundary difficulty by demanding that the reaction rate vanish as r -+ 0 so that, 
in the infinite time required to flow an infinite distance into the highly idealized 
model of the deflagration wave, the mixture will not have reacted. 

6-2 
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The translationally invariant set is most conveniently treated in 7 space : 

d Y/d7 = Le( Y - E ) / ( T  - B ) ,  (2.9) 

- 9 (2.10) 

where Y,e+O as r+O, (2.11) 

Y , s - + l  as ?-+I.  (2.12) 

& A( 1 - Y)++& exp [ - p( 1 - 7)/(a-l + 7 ) ]  

z- 7--8 

An exact integral for Le = 1 is Y = 7. 

For p B 1, with a-I, Le, 6 = O ( l ) ,  the flow is divided into a relatively thin 
downstream region near 7 = 1 of intense reaction and a relatively thick upstream 
pre-heating zone in which an exponentially small amount of product is formed 
(Bush & Fendell 1970). Downstream, if ? = p(1-7), 

Y(7; p, Le, a)  = 1 -p-lYl(?; Le, a)-/3-2Yz(?; Le, a ) -  ..., 

s(7; /I, Le, a )  = B,(?; Le, a)  + / F e , ( ? ;  Le, a )  + ..., 
A(,& Le, a )  = P2[Ao(Le, a )  +P-lAl(Le, a )  + ...I. 

(2.13) 

(2.14) 

(2.15) 

Substitution of (2.13)-(2.15) in (2.9) and (2.10) gives 

dYl/d? = Le, de,/d? = -A,Y,(exp[-?/(a-l+ I)])/(l-e,); (2.16) 

7 2  +%-(l+8)T,j (2.17) 

dY,/d.r = Le(? - Yl)/( 1 - eo) ,  

de, - ROY, exp [ - ?/(a-l+ 
d? I - € ,  (a-l+ 1-so 
- _ -  

Upstream one adopts 

Y(7;  p, Le, a )  = T0(r; Le, a )  +/3-2y2(7; Le, a)+ ..., 

d7; p, Le, a )  = P2%I(7; p, Le, a ) ,  

(2.18) 

(2.19) 

where Z0(7; p+m, Le, a)+O exponentially rapidly. Substitution of (2.15), (2.18) 
and (2.19) in (2.9) and (2.10) yields 

dF,/dr = ~ e F , / 7 ,  dF2 = LeF2/r; (2.20) 

z0 = A,/: [I  - ~ , ( x )  - . . .I xaiexp [ - p( 1 - X)/ (a - l  +.)I> 

y ( x )  I { A, 1 -Yo@) 

A 
x 1 +/3-12-p-2_1__ - ... dx, (2.21) 

where a formal first integral has been written in the light of (2.11)) and 6 > - 1 
for the integral to exist. 

Integrating (2.16) using (2.12)) and integrating (2.20) using (2.11) gives 

- - 
Yl= Le?, e0 = 1 -  2A0Le(a-1+1)2 1- I+- [ ( a-:+ 1) exp (-*)]y; 

(2.22) 

(2.23) 
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where A is a constant of integration. Matching is effected through introduction 
of an intermediate variable 

7$ = ( 1  - 7) /g(p) ,  where I 9 g(p)  9 as /3-+00; (2.24) 

as /3-+co with 7i fixed, 7 +  1 - g ~ ~  and 7-+/3g7Ti+co. Since from (2.21), if S > 0, 
a uniformly valid asymptotic form for Eo is 

exp [ - /3( 1 - ~)/(a-' + T)] 

B 
+..., (2.25) '0 = A,( 1 - AT") 7' 

matching of Y and e is effected to lowest order if 

A = 1, A, = 1/2Le(a-l+ 1)2 .  (2.26) 

The special form of (2.26) for Le = 1 is attributed by Williams (1965) to 
Zel'dovich, Semenov and Frank-Kamenetski. It follows that, in view of (2.22), 
(2.26), and the boundary conditions 

v dv 
[ 1 - (v + 1) exp ( - v)]9 ' 

Y2 = (1  - Le) Le(a-l+ 1)2 

- 
Y, = p7=c 

Matching mass fractions gives 
(2.27) 

1: 
B = -(l-Le)Le(a-l+l)2 

To obtain A,, one may integrate (2.17) to obtain, by (2.12), 

X 
+- - (~+S)X 

1 - SOfX) 

and, in light of the lowest order matching, one may also require that el(?-+ co) -+ 0. 
Hence, 

3(a-l+ 1)-l+ [I + 6- I ]  - (1 - h e )  
A, = Le(a-l+ 1) 9 (2.30) 

where I = l im~~( l - [1- ( l -x)exp(-x) ]*}dx = 1.344 ... . (2.31) 

I n  Bush & Fendell (1970) the excellent agreement (less than 10% error for 
/3 2 3) between the two-term expansion for A with S = - 1 and numerical values 
obtained by von KArmAn and co-workers for the special case Le = I is reported. 
In fact, the accuracy of the closed-form results is superiorto that of any previously 
derived expression. The results for general Lewis number obtained here show 
that m N (hlc,) Leg, so that increasing pD does not always increase the velocity 
of flame propagation (cf. Williams 1965, p. 125). 

Because a small parameter multiplies the most highly differentiated term in 
(2.9), the boundary-value problem posed by (2.9)-(2.12) might appear to be 
singular in the limit Le+co, in which case conduction dominates diffusion. 

p - t m  
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Actually, however, an exact integral to the reduced equation which satisfies all 
the boundary conditions exists: 

Thus, the eigenvalue given by letting Le+ 00 in the result obtained for Le = O( 1)  
[given above in (2.15), (2.26) and (2.30)] would probably be valid: 

= y .  

(2.32) 

To confirm this and to obtain the first correction to (2.32), one writes for the 
downstream region 

4 7 ;  p, 6, a )  = so(?; 6, ")+p-~s,(?;  6,  a )+ ..., (2.33) 

A(,&, 6, a )  = p[Ao(6, a )  +P-lA1(6, a )  + . . . I .  (2.34) 

(2.35) 

where E 0 ( 7 ;  p+ 00, a, 6) -+ 0 exponentially. The governing differential equation 
and boundary conditions become 

de 
5 -  7-6 

1 - E )  exp [ - ,6( i - 7)/(a-l + 7)] 
- , (2.36) 

s+0  as 7+0,  E + I  as 7 + 1 .  (2.37) 

Substituting the expansions into the governing equations, solving subject to the 
boundary conditions, and matching as above, one obtains 

co = exp [ - T/(a-l+ l)], A, = (a-l+ 1)-1; (2.38) 

(2.39) 
2 + (a-1 + I)(  1 + 6 - +r2) A, = 

Zo = no/: xs{exp[-p( l -x) / (a- l+x)]}  

In obtaining (2.39) use is made of the known identity (Pierce & Poster 1956, p. 70, 
equation 526) 

I01 Inp - p  lip = - $ 7 9 .  (2.41) 

The results confirm that, as p+m, the flame propagates faster as the Lewis 
number increases. However, in most combustible gaseous mixtures not including 
hydrogen, the Lewis number remains of order unity. 

3. Adiabatic vaporization and homogeneous combustion in 
a one-dimensional model 

The effect of heat losses owing to the enthalpy required for gasification 
of a premixed fuel a t  its phase-transition temperature may readily be added to 
the model studied in 8 2. The reduction in burning rate and the detailed flame 
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structure is conveniently studied in a co-ordinate system fixed to the two-phase 
interface (say, 6 = 0) for the quasi-steady model adopted. Because no heat is 
expended in first raising the fuel to its vaporization temperature (for simplicity), 
this vaporization process is referred to as adiabatic in the combustion literature. 
Also, the non-gaseous fuel will be taken to be impervious to the gaseous product; 
both these restrictions could be easily relaxed. Of course, the need for tailoring 
the pre-exponential thermal dependence of the specific rate constant to resolve 
the cold-boundary difficulty has now been removed, and the formulation will 
reflect this alteration. 

The non-dimensionalized two-point boundary -value problem may now be 
written as (Williams 1965) 

(3.1) dYld6 = Le( 

d r / d t  = r--8, 

d+t= A(1- Y )  exp [ -p( 1 - r) / (Q + r ) ] ,  
subject to 

( 3 . 2 )  
(3 .3 )  

&/at= L,  r = L, e =  0 a t  E =  0; r = e =  Y = 1 as $-too. (3 .4 )  

The definitions are unaltered except as now noted. The mass fraction of product 
is Y and the mass-flux fraction of product is e. The eigenvalue A, taken as 

where C L ~  characterizes the pre-exponential dependence of the specific rate 
constant. The temperature at  the hot boundary is now 

where L, is the specific heat of phase transition and To is the temperature a t  the 
two-phase interface (given more exactly by the Clausius-Clapeyron equation, 
but taken here as known to an adequate approximation). The dimensionless 
vaporization heat L = L,/(h! - h!). Also, 

7 = ( 1 - L ) -  T - To + L ,  Q = ( l - L ) - - I .  T b  

Tb- TO T b  - TO ( 3 . 7 )  

Since one expects r((+co) > r ( t  = 0 ) ,  one requires L < 1. 

d Y/dr = Le( Y - e) / (7  - e), (3 .8)  
In  r space 

_ -  de A( 1 - Y )  exp [ -p(l - ~ ) / ( & + r ) ]  
d7 r--8 
- 

2 (3.9) 

subject to 

e = Y = 1 at r =  1 ;  e =  0,  d Y / d r =  LeY/L at T =  L. (3.10) 

Proceeding as before for /3 9 1, one defines downstream expansions with 

(3.1 1) 

(3.12) 

(3.13) 

[;? = p(1 - r )]  

Y (7; p, &, L,  Le) = 1 - / 3 - I q (  T ; &, L,  Le) - ,8-2Yz( 7 ; Q, L, Le) - . . . , 
e(7; P, Q ,  L, Le) = e0(?; &, L, Le) +P-b,(?; &, L,  Le) + ..., 
N P ,  Q,  L, Le) = P2[Al(&, L,  h e )  +p-lA,(Q, L, Le) +. ..I, 
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and upstream expansions 

Y(r;P,&,L,Le) = T O ( ~ ; & , L , L ~ ) + P - ~ T ~ ( ~ ; & ,  L,Le) +..., 
d7; &,P,L,Le) = P2zo(7;P, &,L,Le), 

(3.14) 

(3.15) 

where ~ ~ ( 7 ;  P-f m, &, L, Le) -+ 0 exponentially. 
Substituting the expansions in the boundary-value problem, collecting terms 

of the same order, solving subject to appropriate boundary conditions and 
matching yields to lowest order 

dx+ .... (3.17) (1 - xLe) exp [ - P( 1 - %)I(& + x ) ]  To = T ~ ~ ,  Zo = AoIL 
X 

When comparing the lowest order eigenvalue from fj 2 (no gasificahion loss), 

2hpB(Tb - TU)l+& Le[exp ( - Ta/Tb)] 
m2 A 

' p  ( Ta/Tb) 
(3.18) 

with that just derived (with gasification losses), 

2hpBTa1 Le[exp ( - Ta/T,)] 
m2 & (3.19) 

cp(Ta/Tb)2 

one should recall the difference in the value of Tb attained [cf. (2.8) and (3.6)]. 
The decrease in the burning rate m owing to the vaporization process is greater 
for /3 1 than superficially appears. Much of the loss due to the vaporization 
may be simulated by diluting the premixed fuel with product in the geometry 
of $ 2 .  

4. Monopropellant droplet burning : thin-flame models 
The quasi-steady, isobaric, radially symmetric burning of a pure mono- 

propellant droplet uniformly a t  its vaporization temperature is examined for 
an unbounded stagnant ambient atmosphere of product gas. This is an obvious 
extension of the premixed burning with adiabatic vaporization discussed in $ 2  
in the direction of more complex phenomena. 

The dimensionless two-point boundary-value problem describing this flow is 

d Y/dr  = ( ~ / r 2 )  ( Y  - E ) ,  (4.1) 
(Williams 1965) 

m '  
d r  m 

dr Ler2 

dc 
- = D, 
dr riz 

r2( 1 - Y )  exp ( - O/r) 
, 

(4.4) 

(4.5) 

subject to E = 0, 7 = rL, drldr = Lm/Le at r = 1, 

E =  1, Y =  1, ~ = 7 ,  as r - fm.  

Here Y is the mass fraction, and 8 the mass-flux fraction, of product. The 
spherical radial co-ordinate T has been non-dimensionalized against the droplet 
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radius a. The Lewis number Le = h/pc, D will be taken (for convenience) as an 
order-unity constant, h being the thermal conductivity, p the density of the 
binary mixture, cD the constant heat capacity of both species and D the mass- 
transfer coefficient (taken for convenience to vary linearly with temperature). 
The burning rate m plays the role of an eigenvalue (v is the radial velocity 
component) : 

where the numerator is evaluated a t  the droplet surface and the subscript infinity 
denotes evaluation a t  the ambient thermodynamic state. The dimensionless 
temperature r is formed by non-dimensionalizing the physical temperature T 
against the specific heat of combustion (hO,- hi)/c,, where h! is the enthalpy of 
formation of species i ( =  1 for reactant and 2 for product) a t  some reference 
thermodynamic state. The parameter 0 (to be exploited in the perturbation 
expansion) is the ratio of the activation enthalpy cp T, to the heat of combustion 
h! - h!. The first Damkohler number, characterizing the ratio of a typical flow 

m = (Pv)r=a/pw(Dw/a) > (4.6) 

time to a reaction time, is 
D, = a2pBT"l/p,D,, (4.7) 

where B is the frequency factor and a, characterizes the pre-exponential thermal 
dependence of the specific rate constant; for simplicity, D, is taken as constant. 
The specific heat of vaporization L, has been non-dimensionalized against the 
heat of combustion h!-h: to form L. Finally, the ambient temperature r ,  is 
readily shown to be given by 

7, = r L + l - L + A / m ,  (4.8) 

where A is the heat transfer to the ambient gas: 

A = lim Le r2(dr/dr).  
T--fm 

(4.9) 

Clearly A > 0 implies that heat is derived from the ambient gas and A < 0 implies 
heat is lost to the ambient gas. The case of no transfer to the ambient gas ( A  = 0) 
is often referred to as adiabatic burning in the combustion literature (although 
clearly heat derived from combustion is lost to the adiabatic vaporization 
process). Incidentally, under the non-dimensionalization adopted in this section, 
in this problem r ,  is the inverse of the second Damkohler number D, discussed 
in the introduction. 

A rather limited number of numerical results have been reported for the 
boundary-value problem by Lorell & Wise (1955) and by Williams (1959), all 
for A = 0. In  fact, the approximate analytic work described by Williams (1959) 
and by Spalding & Jain (1959) is also limited to adiabatic burning, believed to  
be the case holding in rocket engines [although Jain (1963) has reported some 
preliminary results for A + 0 based on an approximate procedure]. The work of 
Spalding & Jain is of particular interest because these authors assert that a solu- 
tion to the governing boundary-value problem may be obtained by assuming 
that all burning occurs at an infinitesimally thin flame a t  a finite distance from 
the droplet; the temperature is continuous across the flame. Inside and outside 
this concentric spherical shell (thin flame) no burning occurs; inside, the flow is 
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frozen and outside there is pure product. Their solution is completed by assuming 
that the dimensionless location of the thin flame is r = 3, where 

(4.10) 

and rn is the burning rate for planar laminar flame propagation, derived in § 2. 
One goal of this section is to establish under what (if any) conditions such a model 
is a true limit of the boundary-value problem; physically, heat release from 
combustion will occur in a thin shell only for large activation energy, so examina- 
tion of the case 8 1 seems profitable. However, unless D, is also large, it seems 
clear that nearly frozen flow is being examined; the precise criterion for Dl(8) 
must therefore also be developed. 

Previous singular perturbation analyses were indeed limited to the nearly 
frozen case [D, < 1, 8 = O(l)], in which, to lowest order, combustion does not 
enter so heat drawn from the ambient gas must sustain the vaporization, and to 
the case of a thin spherical annulus contiguous to the droplet in which rapid 
decomposition occurred [D, 9 1, 8 = O(l) ,  see Pendell 19691. However, only 
those monopropellants with large activation energy are stable enough for 
practical use, so extending multiple-scaling techniques to such cases seems well 
motivated. 

Adiabatic caSe ( A  = 0) 

For the special case A = 0 ,  one well-known integral of the boundary-value 
problem (4.1)-(4.5) is Y = r-r,+ 1 for Le = 1. [For Le = 1 and A + 0, the 
integral takes a far less tractable form: Y = r - r, + 1 + ( A / k )  (1 - exp ( - h / r ) } . ]  
No such integral can be given for general Le, and the problem is posed in r space 
to  make use of results presented in $ 5  2 and 3: 

- 
fT = (h/rn)* 

(4.11) 

h2(r  - r ,  + 1 - e)  9 (4.12) 
ds 
z- 

D, exp ( - O/r,) Le r4( 1 - Y )  exp [ - 6(r, - r)/rrm] - 

dY Le(Y-e) 
dT r - r7 ,+I -e’  (4.13) _ -  - 

where (with r ,  = rL + 1 - L )  

B = O ,  r =  1, dY/dr=LeY/L a t  r = r L ,  (4.14) 

e =  1, Y = 1, r+cc a t  r =r,. (4.15) 

For 8 9 1 [with Le, r,, L ,  rL = O(1) and D, to be assigned] the flow is again 
divided into a relatively thin region of intense reaction near r, and a relatively 
thick preheating zone upstream. Also, if r, > T ~ ,  1 > L. Therefore, downstream 
one adopts as asymptotic expansions, if ? = O(r, - r ) ,  

Y(r;  8,  D,, Le, L )  = 1 - 8-lYl(?; D,, Le, L )  - 8-2Y2(5; D,, Le, L )  - . . ., (4.16) 

e(r; 8, Dl ,  Le, L)  = so(?; D,, Le, L )  + 8-ler(?; D,, Le, L )  + . . . , (4.17) 
r (r ;  8, D,, Le, L )  = E(8)rc(D,, Le, L) +a(@ rl(T; D,, Le, L )  

(4.18) 
4 8 ,  D,, Le, L )  = 82(A,(D,, Le, L )  +8-lAl(D,, Le, L )  + ...>, (4.19) 

+ ( ~ ~ ( 8 )  r2(?; D,, h e ,  L )  + ..., 
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where A plays the role of an eigenvalue because it contains m: 

A = D,[exp ( - 0/r,)] cL4rE/m2. (4.20) 

It is required that Z % v 9 c1 but that Z(8) = O ( l ) ,  as 0+m, if a thin flame is to 
lie a finite distance off the monopropellant droplet surface. Upstream one adopts 

Y ( r ;  0,D, ,Le,L)  = To(.; D,, Le,L)+ 8-2F2(r; D,,Le, L )  + ..., (4.21) 

c(r; 8, D,, Le, L )  = (02/Z4) e,(r; D,, Le, L),  (4.22) 

r ( r ;  8, D,, Le, L )  = Fa(?-; D,, Le, L )  + 8-1Fl(r; D,, Le, L )  + ... . (4.23) 

Substitution of (4.16)-(4.20) in (4.11)-(4.15) gives to lowest order, if 
G = [D1 exp ( - 8/r,)]-h, 

A, Le3 7 exp ( - 7/72,) dr, Le A$ 
(4.24) - % = L e ,  de,=- - - -- 

a7 d? l--so ’ d? l--so‘ 

The gradients in the downstream zone are so large that convection has become 
negligible relative to reaction and to diffusion, which is suitably represented 
solely by a second-derivative Cartesian-like form. The solution subject to (4.15) is 

yl= Le?, c o =  1-  { 2AoLe2r4, [ 1 -  ( 1+- ;) exp ( -- ;)]y> (4.25) 

(4.26) 

where C and a are related by matching requirements. It may be readily confirmed 
that ti+m as ?-+ 0, so the downstream expansion (4.18) satisfies the ambient- 
state boundary condition. 

Since 
D, exp ( - 8/rm) Z4r2 

02 A, 
m 2  = (4.27) 

substitution of (4.21)-(4.23) in (4.11)-(4.14) gives to lowest order 

> (4.28) 
dFo LeY, 
d r  r-r7,+I’ dr r-r7,+1 

d., ~ 

Le (F0/rC)4 [ 1. - Yo] exp [ - 8(7, - r ) / r ~ ~ ]  _ -  - 

if 

(4.29) 

(4.30) 

The amount of product formed in the upstream region is so small that the energy 
balance is between convection and diffusion, with no heat from reaction. It 
follows that 

D, = 0[82exp (19/7-,)]+m as 0-+00; G = O(B-l). (4.31) 

If D, were much larger, the flame would go to the droplet surface, and hetero- 
geneous effects might well enter; if D, were much smaller, the flame would move 
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off to infinity and again the thin-flame model would be of dubious physical 
relevance. 7, = B(T - 7, f- 

- 
(4.33) 

1 

1 + (At Le/r,2) [In L - In (r - r, + I)] . 
To = 

For matching of the upstream and downstream expansions one introduces an 
intermediate variable ri = (T,-T) &B) such that B > $(8) > 1 as 6+00. So for 
T~ fixed, B+m, the downstream variable 7 = [S/$(~)]T~+OO, and the upstream 
variable r = 7, - [4B)]-l  ri + 7,. Since 

(4.34) 
41-B(1  + r - ~ ~ ) L e ~ z e x p  [-B(r,-~)/rr,] + ..., “ lfT-T, 8 

for large 6 as r increases toward r,, one may confirm that matching may be 
carried out provided that 

“ re = &{1+[1 +4E2Le&1nL-l]*). (4.35) 

Since L < I ,  ?ire 1. The position “ re of the flame is independent of the Lewis 
number Le, but the burning rate m increases linearly with Le to lowest order. 

- 1 
A = I ,  A - -  

O - 2Le274,’ 

Matching also gives 

(4.36) 1 1 - [I - (1  +x) exp ( - x)]t 
[I - (1 +x)exp (-%)I4 

c = 2-B (.-jam [ 
so one may write 

If (T = Ere, then (4.10) holds precisely, as may be shown with the aid of (2.7), 

Le = I ,  DID, = TIT,, 1+6 = Tb 9 T,, 1 L, (4.38) 

and provided that one associates T, in (4.8) with Tb in (2.8). While there may be 
other conditions under which (4.10) holds precisely, this establishes at  least one 
physically interesting set. Further, since, by (4.27) and (4.30), h = TZA;*+ ..., 
the position of the thin flame for Le = 1 is given by 

(2.8) with Y2, = 0, (3.18), (4.6), (4.7), (4.27) and (4.35), provided that 

9 = are = &{I + [I + 4&1n L-l]*}, (4.39) 

the position given by thin-flame theory. Thus, thin-flame theory is a limit of 
finite-rate Arrhenius kinetics for monopropellant burning at least for the 
adiabatic case with the Lewis number unity, the limit being 0 9 1, 

D, = 0[B2exp (B/r,)] 1. 

The (dimensional) mass transfer from a monopropellant droplet 

( M  = 477(pv),=,a2) 

is known to be linearly proportional to the droplet radius a for nearly frozen flow, 
with D, < 1 (Fendell 1969). From (4.6) and (4.27), M - a2 for the intense burning 
associated with a thin flame. 
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Because the two-term expansion for the eigenvalue does appreciably extend 
the range of validity of the asymptotic result to smaller p in $2,  it is deemed 
worthwhile to examine A, in (4.27). Substituting (4.16)-(4.19) in (4.11)-(4.13), 
to next-to-lowest order one obtains, for g1 = a/8, 

(4.40) 

(4.41) 

I n  the downstream region, the spherical nature of the geometry and convection 
enter in forcing-function roles in next-to-lowest order. On solving (4.40) and 
(4.41) subject to (4.15), one has 

(4.42) 
x ax 

Y, = Le(1-Le)Tt 

From the earlier matching one may anticipate that el(? + 00) + 0, so 

A,/2Ao = 37, + 29(E/r,) (2  -I,) + T:(Le - 1 - I ) ,  (4.44) 

where,forconvenience,itisrecalledthatT, = T ~ +  l - L , I  = 1.344 ... [cf. (2.31)], 
?i is given by (4.30) and rc by (4.35). Also, 

I, = 1; {I - [l - (1 + t )  exp (-t)]*){l - ( I  + t )  exp ( -  t))*dt A 0.656. (4.45) 

For the adiabatic case, the thin-flame approximation has been imbedded in 
a systematic perturbation expansion which permits an evaluation of the error 
incurred, and which provides a means for reducing that error. 

5. Concluding remarks 
A widely appreciated lesson, further reinforced by the problems treated here, 

is that ad hoc approximations to the Arrhenius factor can yield misleading 
solutions. For example, the polynomial-type temperature-explicit approxima- 
tion to Arrhenius kinetics yields a negative first-order correction to the laminar- 
flame-propagation eigenvalue (Jain & Kumar 1969); however, as noted earlier, 
the positive correction given here in (2.30) further improves the lowest order 
result (2.26) so that the two-term result (Bush & Fendell 1970) differs from the 
numerical solution for a Lewis number of unity by less than 10 yo for j as small 
as three and by less than 1 yo for p 2 10. Further, the author’s own ad hoc 
approximation to the Arrhenius factor for spherically symmetric monopropellant 
droplet decomposition (Fendell 1969) yielded ambiguous results with regard to 
the variation of the mass-transfer rate M with droplet radius for thin-flame 
intense-burning conditions. The current work gives M N a2, and while early 
experimental work was itself ambiguous (Williams 1965), recent relevant 
experimental work tends to confirm this result. 

For example, Rosser & Peskin (1966) found M N a2 for a porous-sphere 
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apparatus, although failure to preheat the liquid hydrazine fuel to nearly its 
vaporization temperature before injection to the sphere, and also the presence 
of ambient oxidant in even small amounts, cast some doubt on applicability of 
the analysis developed here to their experiment. Lawver (1966) also reports 
M N a2 for hydrazine-droplet burning, although, again, whether sufficient pre- 
caution was taken to exclude oxidizing gases from the ambient environment is 
uncertain. Faeth, Karhan & Yanyecic (1968) also found M N a2 for nitrate-ester 
droplets burning a t  higher pressures and M N a for lower pressures; this is con- 
sistent with the present analytical results since the burning rate is expected to 
increase with the pressure. Of course, for pressures many times atmospheric the 
critical point for such monopropellants is approached, the adiabatic vaporization 
condition (4.4) becomes inaccurate, and the present quasi-steady combustion 
model is inappropriate. [More refined experimental results than burning rates 
have not been given, although Lawver reports a decomposition flame zone of the 
thickness of the droplet diameter; the current large-activation-energy solution 
does yield a flame that remains a finite distance off the droplet surface, in contrast 
to Williams's deductions (Williams 1965, pp. 235-238) for the Spalding-Jain 
analysis in which M N a2 implies a thin gas-phase flame coincident with the 
droplet surface.] Nevertheless, enough experimental confirmation exists to state 
confidently that monopropellant droplet combustion is a t  least a two-parameter 
problem (involving D, and 6) in practice, and statements that M N az a t  small 
activation energy and 31 N al'l a t  large activation energy (Williams 1965, 
p. 243) seem oversimplified. Also, while thin-flame and temperature-explicit 
models muy happen to yield gross quantities like M over a wide range of para- 
metric values for D, and 6,  the generally unknown accuracy with which such 
models simulate Arrhenius kinetics and the generally unknown correspondence 
between Arrhenius parameters and parameters in these ad hoc models makes 
their use for calculation of flow details suspect. I n  fact, occasional inadequacy 
for even gross properties has been documented. With the increasing analytic 
tractability of Arrhenius models there seems less justification for increasingly 
refined numerical integration of ad hoc models (cf. Jain & Ramani 1969) that 
have never been adequately correlated with Arrhenius kinetics. 

Large-activation-energy asymptotic expansions have now been indicated to 
be feasible for one-step reaction mechanisms, but they may be quite practical for 
some multiple-step mechanisms as well. Currently, multi-step chemistry in 
laminar flame propagation, such as (for example) would be needed to investigate 
cool-flame phenomena, is currently treated by numerical integration of an 
Arrhenius model or (as just noted) by approximate analytic treatment of simpli- 
fied ad hoc models, such as ignition-temperature models (cf., for example, 
Kormaii 1970). The advantages of explicit parametric dependencies may be 
achievable for multi-step mechanisms by singular perturbation. Perhaps aero- 
thermochemists may eventually regard large activation energy as an opportunity 
rather than a difficulty. 

While the present work emphasizes fully developed flames, the possibilities of 
analytically treating gas-phase ignition deserve scrutiny. What seems to be 
missing from the existing literature is a complete, effectively time-dependent 
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investigation of flame formation, from nearly frozen conditions to stable burning 
for a flow geometry of practical interest. Current analyses are restricted to early- 
time solution, and study flame evolution only until some arbitrary temperature, 
thermal gradient, or heat-balance criterion for incipient ignition is fulfilled. 

The author is grateful for helpful suggestions, criticism, and encouragement 
from Prof. George Carrier of Harvard University. He is also indebted to Prof. 
\j7illiam Bush of the University of Southern California for collaboration on 
earlier studies that served as a basis for this investigation. This work was sup- 
ported by the U.S. Army Research (Durham, North Carolina) under contract 
DAHC04 67 C 0015. 
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